

High-throughput additive manufacturing and characterization of HEAs for fusion applications

Dan J. Thoma
University of Wisconsin – Madison

Enabling Technologies for Improving Fusion Power Plant
Performance and Availability Workshop
March 8, 2022

Collaborators and Acknowledgements

- LANL: Osman El Atwani, Saryu Fensin, Yongquiang Wang
- Post-docs Zahabul Islam, Buzz Rankouhi, Phalgun Nelaturu
- Graduate students Ankur Agrawal, Caleb Hatler
- Faculty/Staff Adrien Couet, Jae Hattrick-Simpers, John Perepezko, Hyunseok Oh, Izabela Szlufarska
- NNSA ETI: DE-NA0003921 (NNSA Consortia)
- AMO: DE-EE0009138 (Combined Heat and Power)
- ARPA-E: DE-AR0001050 (Open Call 2018)
- ARPA-E: DE-AROOO1431 (ULTIMATE)

Objectives/Outline

- Materials to consider
- Advanced fabrication techniques for novel alloys
- Scale-up potential
- Challenges/opportunities at production level for rapid design

Materials

What are viable fusion materials?

- General: oxide dispersion strengthened metals, refractories, ceramics, composites
- Specific: SiC, boron carbide, carbon fiber composites, tungsten, molybdenum
- A variety of multi-layer tiles that are combinations of above

Jochen Linke, et al. Matter Radiat. Extremes 4, (2019) 056201

Best possible plasma facing component (for debate)

Property	At Room Temperature (RT)	At 1300C ^a	At 20dpa (14MeV neutron equivalent) and RT	At 20dpa (14MeV neutron equivalent) and 1300C ^a
Yield Strength (MPa)	>250 MPa	>100 MPa	>250 MPa	>150 MPa
Ultimate Tensile Strength (MPa)	>350 MPa	>200 MPa	>350 MPa	>250 MPa
Failure Elongation (%)	>20%	>20%	>5%	>5%
Fracture Toughness (MPa m ^{1/2})	>50 MPa√m	>50 MPa√m	>10 MPa√m	>10 MPa√m
Creep Rupture Stress (MPa) @ 1000hr	NA	>80MPa	NA	>80MPa
Thermal Conductivity (W/mK)	>20 W/mK	>20 W/mK	>20 W/mK	>20 W/mK
Volumetric Swelling (%)	NA	NA	<2%	<2%
Neutron Sputtering Rate (μm/yr)	NA	NA	< 100 μm/yr	< 100 μm/yr
Fatigue Failure Cycles (N)	>50,000	>50,000	>10,000	>10,000
Total Activation Dose (on contact after 24hrs) - Rem	NA	NA	<5 Rem	<5 Rem

Strengths and weakness for W as PFC material

JW Coenen, et al., Physical Scripta (2016) 014002.

High-Entropy Alloy (HEA) overview

- High-entropy alloys (HEAs) are alloys with multiple principal elements
- Typically, no element >35 at%
- Usually defined as being primarily a solid-solution matrix
- Promising properties have been observed:
- High-temperature strength
- High specific strength
- Enhanced radiation tolerance

Swelling of increasingly complex alloys under ion irradiation (Jin | 2016)

Both modeling and experimentation have shown HEAs can exhibit enhanced radiation tolerance in the matrix

Design materials for extreme environments

Processing Challenge: Develop materials with:

- Good chemical homogeneity
- Minimize processing defects

Bulk samples (e.g., vs. thin film combinatorial methods)

High entropy alloys

Challenges:

- Compositional space is large!
- Thermodynamic calculations are exploring space with minimal data
- Microstructural control

Each element varied between 5 - 85 at%

Need a high throughput experimental method!

Techniques for High-Throughput Discovey

What are high-throughput experiments?

HTE Method	Advantage	Disadvantage	Image
Diffusion couples	Wide composition space	No bulk samples	(1)
Depositions	Great survey tool	Thin film, small composition regions	(2)
Functional grading with additive man.	Great survey tool	No bulk samples with same composition, powders	(3)
Arc-casting	Good bulk samples	Slower of the techniques, post- processing characterization	(4)

Zhao J C,, et al. MRS Bull, 27: 324–329 (2002).

TisSia TisSia

200 μm

Gebhardt T. et al., Thin Solid Films, 520 5491 – 5499 (2012).

Hochanadel, P et al. Welding in the World 56 51-58 (2012).

https://www.mtixtl.com/EQ-SP-MSM360.aspx

Viable additive manufacturing techniques for HT

Technique	Pros	Cons
FDM (a)	Flexible alloying	 De-binding/sintering required
	 Fine dimensional features and surface finish 	 Distortion on sintering
	 Functional grading is possible 	Full density is difficult
DED (b)	 In situ alloying from most elements within 5 at.% 	• 2.5 D vs 3D
	Densities >99%	 Surface finish ~ 50 μm
	 Functional grading is possible 	
LPBF (c)	 Industry preference for 3D 	 Minimal material choices
	Densities >99%	 No functional grading
	 Surface finish ~ 5 μm, Channels ~600 μm 	 Anisotropy of properties as a
	• Highest cooling rate (10 6 K/s), ~1 μ m solidification	function of build direction
	segregation spacing	

In situ alloying via directed energy deposition (DED)

- DED can be used to rapidly fabricate bulk alloy samples via in situ alloying.
- Elemental powders are controlled independently.

Moorehead M, et al. Materials & Design. 2020;187:108358

- Powders are delivered to print head by argon flow gas.
- · Laser down optic axis melts powders.
- 25-50 unique alloys can be synthesized in 4-5 hours (depends on required sample size).

Bulk HEA sample production via DED

- To produce printed stubs, a powder composition is selected and flown into the path of the laser, as it rasters across surface.
- Following material deposition, one or more remelting passes is performed to homogenize material.
- Process is repeated for five build layers to distance from build plate.

Challenges:

- · Structural integrity of the sample stubs
- Unmelted powders
- Getting desired compositions in the 3D printed stubs

Matlab code developed by Michael Niezgoda controls:

- Powder hopper RPM
- Laser power
- Laser head motion

Microstructural Characterization

Additively Manufactured Equimolar MoNbTaW

Comparison with Arc Melting

Additively Manufactured

Arc Melted

Scale-up for Commercial Product

Bringing HEAs from Research to Production

Flow gas

Simbarashe Fashu, Mykhaylo V Lototskyy, Moegamat Davids, Lydia Pickering, "A review on crudbles for induction melting of titanium alloys." https://www.researchgate.net/figure/Figure-S2-Schematic-diagram-of-the-vacuum-arc-melting-furnace-with-non-consumable_figg_336984599

LPBF is a viable technology for scale-up of many advanced material

LPBF of W lattices

Examples of parts made with Industry

- Molding inserts
- Heat exchangers
- Turbines
 - Hydrogen burners

Challenges/Opportunities

- Matching synthesis and characterization rates
- Feedstock availability and cost
- Process parameters/defects
 - Uncertainty quantification
 - Fatigue
- Scalability between AM techniques

A. Couet et al., Journal of Nuclear Materials 559 (2022) 153425

Challenges and Opportunities: Feedstock DED reactive ynthesis for reduced costs

 $5\text{Mo} + 1/3\text{Si}_3\text{N}_4 + 2\text{BN} \rightarrow \text{Mo}_5\text{SiB}_2 + 5/3\text{N}_2$

Application of dimensionless number to a Mo-alloy

Challenges and Opportunities: Feedstock LPBF reactive synthesis for reduced costs

Discussion topics in summary

- Materials to consider
 - ODS, ceramics, W/W alloys, Carbon based composites, refractories, HEAs
 - Combinations of the above
- Advanced fabrication techniques for novel alloys
 - A few viable techniques, depending upon goals, but ultimately need bulk samples
- Scale-up potential
 - AM has currently demonstrated production capabilities
- Challenges/opportunities at production level for rapid design
 - Feedstock, process parameters, defects/cracking, scalability between AM techniques